Grounding issues A.Nomerotski 5/7/2002

- Properties of CF
- Grounding of L2-5 staves
- Grounding of L0-1
- Other groundings

Properties of CF

- Breese's measurements show that
 - 1. CF that we are going to use is fairly conductive
 - 2. Possible noise can be greatly reduced by grounding
- More measurements when new Network Analyser arrives (May 15th)

Grounding of L2-5 staves

- Cooling channels
 - PEEK
 - Non-conductive no shielding necessary
 - Need to address a number of mechanical issues
 - CDF will use PEEK
 - CF
 - Conductive will need to ground
 - Located close to silicon (~ 100 um from the backplane) => large capacitive coupling potential source of noise
 - Best is to have a ground plane between the channels and the sensor backplane.
 The ground plane is shorted locally to hybrids
 - » The ground plane could be a mesh
 - » Extra components in the stave
 - » Need to insulate from HV
 - Can silicon backplane serve as shielding?
 - » Thickness of Al (on the backplane) is ~ 1 um (ELMA). Skin depth is ~ 26 um @ 10 MHz. Needs testing.
 - » Shielding will depend on frequency
 - » Cooling channel needs to be grounded anyway at the end of stave
 - Can cooling channels be grounded locally to hybrids?
 - Need to address a number of mechanical issues
 - Potentially provides a stiffer (smaller height?) stave core

Grounding of L2-5 staves

- CF C-channels provide stave rigidity
 - CF material is essential for the stave design
 - Conductive => needs grounding
 - Further away from silicon (>1-2 mm) small capacitive coupling to silicon
 - Grounding at the end of the stave should be enough
 - Better to avoid creating a conductive circle around silicon could have inductive coupling to silicon
- Grounding of staves together
 - Can be done at bulkheads
 - Screws to the bulkhead? Copper tape?
 - Several ground wires go from bulkhead to junction card region
 - Can be done through hybrid ground
 - All ground is provided through digital jumper cable

Grounding of L0-1

- CF support for L0-1
 - Conductive : all worries above apply to L0-1
 - Best is to ground locally
 - To hybrids for L1
 - To sensors for L0
 - HV filtering board has a ground pad on it

General Grounding

- Run 2B will have the same grounding scheme as Run 2A (because we do not change IBs)
 - All grounds (AVDD, DVDD, VCC, HV) are tied together in IBs
 - The grounds are kept together all the way from IB to HDI
 - Horseshoe is not connected to Central Calorimeter
 - Horseshoe has common ground for all ACs
- CDF has different grounding scheme
 - AVDD and DVDD grounds are tied together on the hybrid
 - They are kept separately all way to the power supplies
 - CDF is more sensitive to noise due to deadtimeless operation
 - Digital signals are source of noise for analog part